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Abstract. We study neural network models in which the synaptic efficacies are restricted 
to have a prescribed set of signs. It  is proved that such neural networks can learn a set 
of random patterns by a perceptron-like algorithm which respects the synaptic restrictions 
at every step. In particular, i t  shows that learning can take place iteratively in a network 
which obeys Dale’s rule, i.e. in which neurons are exclusively excitatory or inhibitory. The 
learning algorithm as well as its convergence theorem are stated in perceptron language 
and it is proved that the algorithm converges under the same conditions as required for 
an unconstrained perceptron. Numerical experiments show that these necessary conditions 
can actually be met for relatively large sets of patterns to be learned. We then argue that 
the results are invariant under the distribution of the signs, due to gauge invariance for 
random patterns. As a consequence the same sets of random patterns can be learned by 
networks which have any fixed distribution of synaptic signs, ranging from fully inhibitory 
to fully excitatory. 

1. Introduction 

The Edinburgh group has brought perceptron theory [l, 21 into a very fruitful rela- 
tionship with attractor neural networks [3, 41. It started with the adaptation of the 
perceptron learning algorithm [ l ,  21 as a technique for storing a set of patterns as 
attractors in a neural network [5]. It culminated with the seminal work of Elizabeth 
Gardner [6, 71, which established: 

( i )  the number of random patterns that can be stored as a function of the cor- 
relations between the patterns, as well as of the stability parameter of each of the 
attractors; 

(ii) that the perceptron learning convergence theorem can be extended to cases 
in which stability parameters are imposed to enlarge the basins of attraction of the 
embedded attractors. 

Perceptron theory also stood to gain from these studies. Gardner’s shift of attention 
to typical random patterns permitted specific statements as to the conditions for which 
the perceptron can find a solution. Such knowledge about existence underlies the 
learning convergence theorem, as well as the rate at which learning can converge. The 
rate of convergence depends just on the largest stability parameter for which a solution 
exists. As far as random patterns are concerned, existence of a solution depends 
essentially on the number of patterns to be taught. The knowledge of the maximal 
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number of patterns that can be learned, as a function of the stability parameter, gives 
at one and the same time both the knowledge of the convergence process and an upper 
bound on the number of correction steps. 

If learning algorithms and storage estimates of this type are to be candidates for 
modelling properties of biological networks, then they will have to conform with at 
least one constraint, namely that neurons obey in general Dale’s rule [8]. This rule 
stipulates that the synapses emanating from a given neuron are all of the same type, 
either all excitatory or all inhibitory. In other words, a neural network that is to learn 
by a perceptron algorithm must be able to do so by modifying synaptic efficacies but 
keeping fixed the signs of all those which come out of a given neuron. In the perceptron 
context this biological constraint implies that each of the N weights, leading from the 
N input elements to the linear threshold output element, will have a pre-assigned sign. 

To be more specific, suppose that a neural network is specified by giving the neural 
activity states Si = (k1) of N neurons and the synaptic efficacies Jij for i # j connecting 
each pair of neurons. The efficacy Ji, measures the amount of post-synaptic potential 
(local field) induced in neuron i by neuron j .  The dynamics, in the absence of noise is 

where we have taken for simplicity zero thresholds. Extensions to finite threshold have 
been discussed by Gardner [6]. A fixed-point attractor state of this dynamical process 
has to satisfy 

For such a network, to ‘learn’ a set of patterns is to modify the synaptic weights Ji, 
in such a way as to reach a set which will have all the patterns in the set as fixed 
points. Specifically, the patterns to be learned are a set of p N-bit words, <: = 51, 
i = 1,. . . , N ;  p = 1,. . . , p .  The network starts with a set J i  and then one pattern at 
a time is presented to the network, by substituting Si = 4: on the left-hand side of 
equation (1). If the inequality is not satisfied the J i j  are modified by writing 

where J,:’ is the set of couplings following k learning passes. The specification of the 
form of A::’ completes the definition of the learning algorithm. 

Since in the above description different output neurons are independent, it is 
sufficient to consider just one. This reduces the formulation to that of the perceptron. 
Here the learning can be defined as follows: there is a set of N input variables S, and a 
set of weights A, .  To learn a set of p patterns Of = + 1  is to modify the A ,  recursively, 
so as to reach a set of A ,  which will satisfy 

j = l  
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for all p = 1 , .  . . , p .  The patterns are tested as to whether they satisfy the inequality. 
I f  some pattern does not, the weights are modified. Following the kth error in the 
sequence of presentations of the patterns, the weights have the values AI”. Upon the 
detection of the next error, the ith weight is modified by the addition of 

The evaluation of the maximal storage capacity of perceptrons, and hence of neural 
networks, has been obtained [9, 10. 61 by inspection of the full space of weights (or, 
equivalently, synaptic efficacies or coupling constants). The same can be said about 
the learning algorithm. In what follows we will constrain every synaptic weight to 
have a given sign. This requirement can be stated formally by choosing a fixed set 
g, = * I  ( i  = 1, . . . ,  N ) ,  which classifies our neurons as inhibitory or excitatory, and 
demanding that a solution will satisfy Aik’g, > 0, for all i at all stages k. 

There are two contexts in which the Dale constraint has been implemented in 
neural networks. In the Hopfield model [3], which has a random distribution of 
synaptic efficacies, the synaptic matrix has been diluted by eliminating synapses until it 
conforms with the rule [ l l ] .  The network then continues to function quite effectively as 
an associative memory. The second context is that of Willshaw’s model [12, 131. In this 
model a set of sparsely coded patterns can be stored in a purely excitatory network. 
While this is a very effective model it is different in spirit from perceptron learning 
in that the sparse coding eliminates interference between patterns and the encoding 
is, therefore, not a process of error detection and synaptic modification, but rather a 
direct writing of the synapses according to the patterns presented until errors start to 
appear. 

Here we address the question as to whether there exists a learning algorithm of 
automatic modification of synapses, which respects Dale’s rule, and brings about the 
embedding of a set of random patterns as attractors. Stated in perceptron language the 
question will be about the existence of a learning algorithm, respecting a prescribed 
distribution of signs for the weights, which can classify a set of random patterns into 
two classes, one giving the target output +1 and the other -1. Given such an algorithm, 
one would like to know the conditions for its convergence and the convergence rate. 
The other part of Gardner’s program, that of the conditions for the existence of a 
solution and correspondingly of the storage capacity, will be described elsewhere [14]. 

One may consider different learning algorithms which respect Dale’s rule and which 
converge under the same conditions as those for an unconstrained perceptron, namely: 

i f a  solution to the class$cation problem exists, then the algorithm will converge to 
a solution after having made a number of corrections at most polynomial in N .  

2. Description of learning algorithms 

Consider, for example, the following algorithm which automatically respects the signs 
of all the weights. Encountering an error upon the presentation of pattern v ,  i.e. 

the weights are modified according to 
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where d I  = @,/& = & I / & ,  and the function 6' is 1 for positive argument and zero 
otherwise. In this process the weight is modified as in the usual perceptron, unless the 
modification would lead to a change in the sign of that weight. In the latter case the 
weight remains unmodified. Clearly, if the initial conditions are such that Ajo'gi > 0, 
then each weight will preserve the sign of the corresponding g,  throughout the process. 
Note that the requirement on the initial A is quite plausible, since the excitatory or 
inhibitory nature of a synapse is not learned. 

Another possibility would be a variation on the previous process, namely if the 
modification of a weight would lead to a change of sign, that weight is set to zero. Once 
set to zero, the weight can be modified only if the modification respects the prescribed 
sign. 

3. Convergence of learning algorithms 

The proof follows the canonical perceptron path. One assumes the existence of a 
solution, somewhat stronger than that being learned, i.e. one assumes that there exists 
a set A: satisfying 

I = I  

A:& > 0 

and, for all ,u = 1 , .  . . , p 

i= I 

Then, one monitors the angle cosine between the presumed solution, A',  and the 
consecutive learned solutions, A'k' ,  i.e. 

Since A' is normalised Gk I 1. The proof consists of demonstrating that the numerator 
in G': increases faster than the denominator, when corrections are being made. 

Consider the first algorithm. If upon the presentation of the pattern 6", following 
k previous correction steps, there is an error, i.e. inequality (3) holds, then a correction 
has to be made according to equation (4). 

The change in the numerator of G will be 

I =  1 i= 1 

The first term in the last line is bounded from below by 6 ,  as was assumed in (6). The 
second term in this line is positive. To see this, note that has the same sign as 
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A:.  When the curly brackets in each term in the sum is non-zero it is negative, e.g. 
-1 and i t  is non-zero only if A:" and hence also A: are of opposite sign to 4:. Each 
non-vanishing term in the second sum is, therefore, a product of two negative factors. 
As a result 

and the numerator grows at least linearly with k .  
As far as the denominator is concerned, the change in its square is 

i= I i= I 

Due to the normalisation of the patterns 4, the second term is bounded from above 
by 1, for all k .  The first term can be written as 

The first term in the above expression is negative, because we have had an error, 
i.e. because of equation (3). The second term is positive, but has an upper bound 
independent of k .  To see this, note that as before the term in the curly brackets vanishes 
unless Cpi is of opposite sign to Aik' and is greater in absolute value. Hence, the above 
expression can be bounded from above by 

All of this leads to the conclusion that the square of the denominator grows at 
most linearly with k .  The denominator itself, therefore, grows at most like 4 and the 
algorithm must converge, much as iq the original proof[2]. This proof can be extended 
to the second algorithm without any special difficulty. 

4. Discussion 

Clearly, the above theorem displaces the whole question to the availability of the 
sufficient conditions for the convergence, i.e. whether a solution of the type of 
inequalities ( 5 )  exists for a given set of patterns. This is answered by the other aspect of 
Gardner's approach and here will be deferred to a subsequent report [14]. Nevertheless, 
numerical experiments show that such solutions exist for random patterns, up to at  
least p = N/2. and that convergence is slower than in the unconstrained case. The first 
algorithm is slower than the second. 

The existence of solutions with a prescribed set of synaptic signs has rather 
surprising implications. It  implies that the perceptron, and hence the network, can 
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learn a set of random patterns of 1 1  given any distribution of the signs, g , ,  on the 
connections. The question of the distribution of these (quenched) variables has not 
entered the discussion of the convergence theorem and is implicit in the assumption of 
the existence of A'.  But if a solution A' exists for one set of g , ,  then changing the signs 
of any subset of them can be compensated by the same change in the corresponding 
components of all the patterns. The new patterns will still be words of random +_1. 
The corresponding change in the components of A' produces a solution with the new 
distribution of signs for the new set of patterns. Thus, the probability of finding a 
solution A' for a set of p random patterns is independent of the particular realisation 
of the set of signs g,. 

In the thermodynamic limit ( N  -+ x) the implications are even more striking. If 
there is a non-vanishing probability for a solution of inequalities (5) for a given set of 
signs, g , ,  in the space of all possible sets of p random patterns, then this probability 
approaches unity as N + x .  Since this probability is unchanged by the change of 
signs of a subset of the g r ,  one finds that there is also a solution with the new set 
of signs for almost every set of p patterns. Consequently, given a fixed (quenched) 
set of p random patterns, if a solution A' exists for a particular realisation of the g , ,  
then the probability that a solution B' exists for any other realisation of the signs 
approaches unity as N + E. This is a local gauge invariance of the theory. The search 
for a solution, however, is constrained to a subspace of the total space of couplings, 
a subspace smaller by a factor of 2-" and the volume of the subspace of solutions is 
reduced by at least this same factor. 

In particular, changing the distribution includes the possibility of changing the 
relative number of +1 and -1, even reaching the extreme of having the signs of 
all the weights positive. In other words, this innocuous result implies that one can 
comfortably store an arbitrary set of random patterns, even in a neural network that 
is purely excitatory, up to the same storage limit as for any other network which has a 
prescribed distribution of signs (g,). Of course, one has to carefully study the basins of 
attraction, and especially how to avoid falling too often into the ferromagnetic states 
with all neurons active at maximum rate or with all neurons quiescent. The possibility 
of complying with a pre-assigned distribution of the local fields [15, 16, 171 or of 
improving the convergence rate of the learning algorithm [18] should be the subject of 
further study. 
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